

Ciências ULisboa

Faculdade de Ciências da Universidade de Lisboa

DISCIPLINA MIEA 2019

move＞green圆园國包 Mobilidade Sustentável

Sustainable mobility indicators (7 to 55!)

11 Indicators/metrics

Environmental
DIMENSION

Human exposure/air quality related

Global warming related

Emissions per year (per capita)

Energy consumption per year (per capita)

MJ or
MJ/year
Or
MJ/pkm

Home
 Work (or university)

Commuting

Walking....always....speed? Energy????Emissions???
The Revised Harris-Benedict Equation:

- for men, $P=\left(\frac{13.397 \mathrm{~m}}{1 \mathrm{~kg}}+\frac{4.799 \mathrm{~h}}{1 \mathrm{~cm}}-\frac{5.677 a}{1 \text { year }}+88.362\right) \frac{\mathrm{kcal}}{\text { day }}$

Basal energy

- for women, $P=\left(\frac{9.247 \mathrm{~m}}{1 \mathrm{~kg}}+\frac{3.098 \mathrm{~h}}{1 \mathrm{~cm}}-\frac{4.330 \mathrm{a}}{1 \text { year }}+447.593\right) \frac{\mathrm{kcal}}{\mathrm{day}}$

Harris JA, Benedict FG (1918). "A Biometric Study of Human Basal Metabolism". Proceedings of the National Academy of Sciences of the United States of America. 4 (12): 370-3.

A Biometric Study of Basal Metabolism in Man. J. Arthur Harris and Francis G. Benedict. Washington, DC: Carnegie Institution, 1919.
$-55.0969+(0.6309 \times$ HR $)+(0.1988 \times$ W $)+(0.2017 \times$ A $)$

Activity energy

kJ/min

$$
-20.4022+(0.4472 \times \text { HR })-(0.1263 \times \text { W })+(0.074 \times \text { A })
$$

$$
\begin{aligned}
& \text { HR }=\text { Heart rate (in beats/minute) } \\
& \mathrm{W}=\text { Weight (in kilograms) } \\
& \mathrm{A}=\text { Age (in years) }
\end{aligned}
$$

Metabolic Work Rate (Watts or J/s)

```
MWR = - 1967 + 8.58 HR + 25.1 HT + 4.50 A - 7.47 RHR + 67.8 G
Where,
HR is heart rate (bpm)
HT is height (in.)
A is age (yr),
RHR is resting heart rate (bpm)
G is gender ( }M=0,F=1)
```

@ Predictive Models for Estimating Metabolic Workload based on Heart Rate and Physical Characteristics

$0.075 \mathrm{gCO}_{2} / \mathrm{MJ}$

finise P\#1

Estimate your energy for regular walking (at least 3 repetitions of the measurements), in $\mathrm{MJ} / \mathrm{pkm}$, and speed (km/h). What would be your graph?

Excel file by e-mail

MJ/pkm

g/pkm

Measurements by ACTIVITY WATCH w/ GPS

STRAVA

Mouse right click; Inspect;
Network;
Filter by "stream";

Select Response;

Measurements by ACTIVITY WATCH w/ GPS

STRAVA

Measurements by ACTIVITY WATCH w/ GPS

STRAVA

distance 0.8 km	Correlation \#1 $\frac{\text { Walk-Basal }}{\text { Distance }}$	0.14286	0.010
bpm 89 bpm		MJ/pkm	g/pkm
time 644.64 seconds	Correlation \#2 $\frac{\text { Combined }}{\text { Distance }}$		
Speed 4.5 km/h	Correlation \#2 ${ }_{\text {Distance }}$	0.170023	0.012

~ 4.5 km/h

/// Comparison of journey speeds by different modes of transport in town /I/I/I/I/I/I/I/I/I/I/I/I/I/

Source: European Commission

Exercice \#1 Identify the final energy consumption and direct emissions in these mobility examples.
 KONSEKVENS LCA.

Exercice \#1 Identify the final energy consumption and direct emissions in these examples.

Exercice \#2 Identify the final energy consumtpion in $\mathrm{MJ} / \mathrm{pkm} \mathrm{MJ} /$ year and CO_{2} emissions in $\mathrm{g} / \mathrm{pkm} \mathrm{kg} /$ year, for this imaginarium location; population 10 people! In commuting 2 km .

Height (cm)	Weight $\mathbf{(k g)}$	BPM basal	BPM exercise	Age
171	53	68	128	17
165	55	56	108	17
183	62	89	160	15
174	67	68	116	17
183	73	76	104	17

Sex		T(s)
M	Luis	32
F	Joana	34
M	João	37
M	Francisco	41
M	João	42

为

| | Height (cm) | W (kg) | BPM basal | BPM walking | A | Sex | T(s) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| largarida | 161 | 63 | 76 | 88 | 17 | F | 137 |
| latarina | 161 | 54 | 76 | 84 | 16 | F | 133 |
| ^ariana | 164 | 60 | 80 | 160 | 16 | F | 43 |
| loana | 158 | 47.5 | 64 | 84 | 16 | F | 126.6 |
| Лariana | 178 | 60 | 76 | 92 | 16 | F | 126.6 |

shutterstock.com • 140323552

Exercice \#3 Identify the final energy consumtpion in $\mathrm{MJ} / \mathrm{pkm}$ and CO_{2} emissions in $\mathrm{g} / \mathrm{pkm}$ for this imaginarium location; population 10 people! In commuting 2 km .

E-bike (speed limit 22 km/h)

shutterstock.com • 140323552

Case study, change from convencional bikes to eletric bikes? What will happen?

Exercice \#3 supplemental information

- European Union (current composition) Electricity generation: 295.8

150

Ciências ULisboa

Exercises

Exercice \#3 supplemental information

	Table 3 - Electric power transmission and distribution losses (\% of output) $[8]$					
Country Name	2005	2006	2007	2008	2009	2010
Arab World	12.41	11.49	12.37	13.24	13.24	12.41
Caribbean small states	8.58	9.29	7.26	6.06	4.34	11.60
East Asia \& Pacific (all income levels)	6.35	6.18	6.01	5.96	5.92	5.89
East Asia \& Pacific (developing only)	7.42	7.06	6.78	6.60	6.41	6.46
Euro area	6.09	5.34	5.41	5.34	5.29	5.09
Europe \& Central Asia (all income levels)	8.57	8.03	7.95	7.89	7.97	7.68
Europe \& Central Asia (developing only)	13.29	13.09	13.05	12.68	13.07	12.43
European Union	6.67	6.08	6.12	6.07	6.08	5.86
Heavily indebted poor countries (HIPC)	17.18	16.41	16.10	16.96	16.27	17.67
Latin America \& Caribbean (all income levels)	16.18	16.37	16.24	15.95	16.23	15.31
Latin America \& Caribbean (developing only)	16.57	16.80	16.76	16.44	16.63	15.74
Least developed countries: UN classification	14.91	13.35	13.49	13.47	12.31	12.03
Middle East \& North Africa (all income levels)	13.04	12.46	13.19	13.48	13.16	12.29
Middle East \& North Africa (developing only)	16.13	16.23	17.35	17.65	17.08	15.41
North America	6.37	6.44	6.45	6.17	6.93	6.58
OECD members	6.48	6.34	6.32	6.21	6.60	6.33
Other small states	22.08	21.68	24.84	21.51	23.09	20.45
South Asia	24.93	23.41	21.83	21.24	21.06	20.66
Sub-Saharan Africa (all income levels)	11.26	11.63	10.23	10.57	11.00	11.79
Sub-Saharan Africa (developing only)	11.26	11.63	10.23	10.57	11.00	11.79
World	8.84	8.61	8.47	8.37	8.62	8.31

(c) emel
 siemens ORBITA
 Ingenuity for life
 EST. 1971

Final energy

MJ/pkm???

Top speed 24 km/h

Real use Final energy $\mathrm{MJ} / \mathrm{pkm}$???biogenic vs eletric

E-Bike Example

Representation first 5 km

ELECTRICITY

Real range: 30 km spent 1.12 kWh
Overall 500 m elevation gain......
~ $0.14 \mathrm{MJ} / \mathrm{pkm}$

Guidelines

Developing and Implementing
a Sustainable Urban Mobility Planx

C
 Ciências ULisboa
 SUMP - Sustainable mobility plans

Surveys....

Surveys....

How people travel?

Why people travel?

How people travel?

When people travel?

How people travel?

Why people travel?
Purpose share: Great Britain, 2010
(NTS web tables NTS0401 and NTS0402)

Average number of trips

Average distance travelled

How people travel?

How people travel?
Mode share: Great Britain, 2010
(NTS web tables NTS0301 and NTS0302)

Average distance travelled

How people travel?

When people travel?
Trips in progress by time of day and day of week - index: Great Britain, 2010 (NTS web table NTS0501)

How people travel?

Why people travel?

How people travel?

When people travel?

CENSOS mind

XV recenseamento geral da população
V recenseamento geral da habitação

RESULTADOS DEFINITIVOS

LISBOA

MOVIMENTOS PENDULARES
MEIO DE TRANSPORTE UTILIZADO NOS MOVIMENTOS PENDULARES
TEMPO MÉDIO POR DESLOCAÇÃO PENDULAR

Commuting(regional interactions), 2011

Means of transport in commuting

Average time in commuting (average 30 min 2001; 26 min 2011)

Recent mobility survey 2017 Porto and Lisbon

1,60 milhões de pessoas
 Statistics portugal

Recent mobility survey 2017 Porto and Lisbon
46080 valid answers, 18169 na AMP e 27911 na AML, contemplando um total de 99144 indivíduos (40393 na AMP e 58751 na AML).

Campain: October-December 2017

1st Web (Computer Assisted Web Interview-CAWI)

2nd Face to face interviews(Computer Assisted Personal Interview-CAPI) for the non respondants 1st stage.

Recent mobility survey 2017 Porto and Lisbon

Why people travel?

Figura 16 - Distribuição do número de deslocações por motivo de deslocação (excluindo "regresso a casa")

Recent mobility survey 2017 Porto and Lisbon

How people travel?

Figura 18 - Distribuição do número de deslocações por principal meio de transporte, nos dias úteis (globalidade dos meios de transporte)

Recent mobility survey 2017 Porto and Lisbon

How fast people travel?

Average $30 \mathrm{~km} / \mathrm{h}$

Why car?

- Speed;
- Confort;
- No public transport direct connection between origin and destination.

Surveys

Recent mobility survey 2017 Porto and Lisbon

Impact of people travel?

Quadro 6

Deslocações por tipo de dia e meio de transporte principal da deslocação

AM Lisboa

Unidade:10 ${ }^{3}$

a) SDF - Sábados, domingos e Feriados

Number trips Per mode

Surveys

Recent mobility survey 2017 Porto and Lisbon

Impact of people travel?

Quadro 9		
Tempo e distância por deslocação, segundo o principal meio de transporte das deslocações		
AM Lisboa		
	Duração média (minutos)	Distância média (km)
		$\mathbf{1 0 . 3}$
AM Lisboa	$\mathbf{2 4 . 3}$	12.7
Automóvel - condutor	21.7	13.3
Automóvel - passageiro	20.8	11.7
Motociclo/ciclomotor	18.0	12.1
Autocarro (transporte público)	45.7	19.1
Comboio	53.4	8.5
Metropolitano	39.7	19.5
Barco	58.1	6.4
Táxi	19.6	17.2
Transporte escolar / empresa	32.6	1.5
A pé	17.0	8.8
Bicicleta	36.2	24.7
Outro/desconhecido	31.7	

[^0]
Surveys

Recent mobility survey 2017 Porto and Lisbon

Impact of people travel?

$\Sigma_{i}\left(\right.$ Number trip $_{i} X$ km per trip ${ }_{i} X$ EC $\left._{i}\right)$

; mode of transport
EC_{i} final energy consumption by mode (MJ/pkm)
 ULisboa SUrVEYS

$1^{\text {st }}$ design
$2^{\text {nd }}$ test in a few people
$3^{\text {rd }}$ did you get the info you needed?

Yes!
Ready to go...

How people travel?

How people travel? 2017 FCUL survey

(overall population, students, professores, researchers, others)

- Origin -destination distance
- Transportation mode
- Commuting duration and average speed
- Car ownership (\#cars per \#family) comparison with national average
- Location parking for those who use the car

C Ciamias
 ULisboa
 $1^{\text {st }}$ assignment

How people travel? 2017 FCUL survey

- Why not public transport for those who use car
- Rush hours (morning peak and afternoon peak)
- Willingness to drive an EV?
- Willingness to use carsharing?
- Willingness to use carpooling?
- Willingness to use bikesharing?
- Willingness to be on na autonomous car/drive and a full autonomous car

How people travel? 2017 FCUL survey due 10 november

- emissions per capita

CO2
PM 10
NOx
CO2eq per year WTT and TTW
and.....as additional conclusions

- Main difficulties dealing with the file?
- Lessons learned
- First steps in a sustainable mobility plan;
- Mobility measures;
- How to design a survey to get the right answers;
- Final energy consumption/emission estimation from surveys.

Obrigado

Ciências ULisboa

Faculdade de Ciências da Universidade de Lisboa

[^0]: Nota: Exclui as deslocações internacionais

