

Ciências ULisboa

Faculdade de Ciências da Universidade de Lisboa

DISCIPLINA MIEA 2019

Mobilidade Sustentável

Comparing transport systems??

Sustainable mobility indicators (7 to 55!)

Energy consumption per year (per capita)

MJ or MJ/year	
Or	
MJ/pkm	

5

Home Work (or university)

Commuting

C Ciências Minimum energy and emissions

Walking....always....speed? Energy????Emissions???

The Revised Harris-Benedict Equation:

• for men,
$$P = \left(\frac{13.397m}{1 \text{ kg}} + \frac{4.799h}{1 \text{ cm}} - \frac{5.677a}{1 \text{ year}} + 88.362\right) \frac{\text{kcal}}{\text{day}}$$
 Basal energy
• for women, $P = \left(\frac{9.247m}{1 \text{ kg}} + \frac{3.098h}{1 \text{ cm}} - \frac{4.330a}{1 \text{ year}} + 447.593\right) \frac{\text{kcal}}{\text{day}}$

Harris JA, Benedict FG (1918). "A Biometric Study of Human Basal Metabolism". Proceedings of the National Academy of Sciences of the United States of America. 4 (12): 370–3.

A Biometric Study of Basal Metabolism in Man. J. Arthur Harris and Francis G. Benedict. Washington, DC: Carnegie Institution, 1919.

Ciências Minimum energy and emissions

W = Weight (in kilograms)

A = Age (in years)

Metabolic Work Rate (Watts or J/s)

MWR = - 1967 + 8.58 HR + 25.1 HT + 4.50 A - 7.47 RHR + 67.8 G

Where, HR is heart rate (bpm) HT is height (in.) A is age (yr), RHR is resting heart rate (bpm) G is gender (M=0, F=1).

@ Predictive Models for Estimating Metabolic Workload based on Heart Rate and Physical Characteristics

0.075 gCO₂/MJ

Carla Silva camsilva@fc.ul.pt

Estimate your energy for regular walking (at least 3 repetitions of the measurements), in MJ/pkm, and speed (km/h). What would be your

Measurements by ACTIVITY WATCH w/ GPS

Measurements by ACTIVITY WATCH w/ GPS

Measurements by ACTIVITY WATCH w/ GPS

distance 0.8 km	Correlation #1 $\frac{Walk-Basal}{Distance}$	0.14286	0.010
bpm 89 bpm time 644 64 seconds	Combined	MJ/pkm	g/pkm
Speed 4.5 km/h	Correlation #2 $\frac{Compared}{Distance}$	0.170023	0.012

Exercice #1 Identify the final energy consumption and direct emissions in these mobility examples.

shutterstock.com • 140323552

FIGUR. ILLUSTRATION OF BIDRAGENE TIL DRIVHUSEFFEKT FRA DE FORSKELLIGE LIVSCYKLUSFASER. KONSEKVENS LCA.

Exercice #1 Identify the final energy consumption and direct emissions in these examples.

Exercice #2 Identify the final energy consumption in MJ/pkm MJ/year and CO_2 emissions in g/pkm kg/year, for this imaginarium location; population 10 people! In commuting 2 km.

	Height (cm)	Weight (kg)	BPM basal	BPM exercise	Age	Sex		T (s)	
	171	53	68	128	17	М	Luis	32	
	165	55	56	108	17	F	Joana	34	
	183	62	89	160	15	М	João	37	
	174	67	68	116	17	М	Francisco	41	
a alamy stock photo	183	73	76	104	17	М	João	42	

	-
[2

	neight (chi)	vv (kg)	BPIVI Dasai	BPIVI Walking	A	Sex	I (S)	
largarida	a 161	63	76	88	17	F	137	
Catarina	161	54	76	84	16	F	133	
Mariana	164	60	80	160	16	F	43	
Joana	158	47.5	64	84	16	F	126.6	Т
Mariana	178	60	76	92	16	F	126.6	

shutterstock.com • 140323552

Ciências ULisboa

Exercises

Exercice #3 Identify the final energy consumption in MJ/pkm and CO_2 emissions in g/pkm for this imaginarium location; population 10 people! In commuting 2 km.

E-bike (speed limit 22 km/h)

shutterstock.com • 140323552

Exercice #3 supplemental information

g CO2/kWh

Energy

Exercice #3 supplemental information

/ Technolog Network S

A PENERGY TECHNOLOGY SYSTEMS ANALYSIS PROGRAMME

© IEA ETSAP - Technology Brief E12 - April 2014 - www.etsap.org

Country Name	2005	2006	2007	2008	2009	2010
Arab World	12.41	11.49	12.37	13.24	13.24	12.41
Caribbean small states	8.58	9.29	7.26	6.06	4.34	11.60
East Asia & Pacific (all income levels)	6.35	6.18	6.01	5.96	5.92	5.89
East Asia & Pacific (developing only)	7.42	7.06	6.78	6.60	6.41	6.46
Euro area	6.09	5.34	5.41	5.34	5.29	5.09
Europe & Central Asia (all income levels)	8.57	8.03	7.95	7.89	7.97	7.68
Europe & Central Asia (developing only)	13.29	13.09	13.05	12.68	13.07	12.43
European Union	6.67	6.08	6.12	6.07	6.08	5.86
Heavily indebted poor countries (HIPC)	17.18	16.41	16.10	16.96	16.27	17.67
Latin America & Caribbean (all income levels)	16.18	16.37	16.24	15.95	16.23	15.31
Latin America & Caribbean (developing only)	16.57	16.80	16.76	16.44	16.63	15.74
Least developed countries: UN classification	14.91	13.35	13.49	13.47	12.31	12.03
Middle East & North Africa (all income levels)	13.04	12.46	13.19	13.48	13.16	12.29
Middle East & North Africa (developing only)	16.13	16.23	17.35	17.65	17.08	15.41
North America	6.37	6.44	6.45	6.17	6.93	6.58
OECD members	6.48	6.34	6.32	6.21	6.60	6.33
Other small states	22.08	21.68	24.84	21.51	23.09	20.45
South Asia	24.93	23.41	21.83	21.24	21.06	20.66
Sub-Saharan Africa (all income levels)	11.26	11.63	10.23	10.57	11.00	11.79
Sub-Saharan Africa (developing only)	11.26	11.63	10.23	10.57	11.00	11.79
World	8.84	8.61	8.47	8.37	8.62	8.31

Real use Final energy MJ/pkm???biogenic vs eletric

bpm

Ciências ULisboa SUMP - Sustainable urban mobility plans

Guidelines

Developing and Implementing a Sustainable Urban Mobility Plan

Carla Silva camsilva@fc.ul.pt

С

ULisboa SUMP - Sustainable mobility plans ^{1st Semester 2019-2020} Sustainable mobility

Knowing how people move???

* Knowing how people move???

How people travel?

Why people travel?

How people travel?

When people travel?

How people travel?

Why people travel?

Purpose share: Great Britain, 2010 (NTS web tables NTS0401 and NTS0402)

Average number of trips

Average distance travelled

How people travel?

Image: Section of the construction of the constructiono

How people travel?

Mode share: Great Britain, 2010 (NTS web tables NTS0301 and NTS0302)

Average number of trips Average distance travelled

How people travel?

When people travel?

Trips in progress by time of day and day of week - index: Great Britain, 2010 (NTS web table NTS0501)

How people travel?

Why people travel?

How people travel?

When people travel?

CENSOS

XV recenseamento geral da população V recenseamento geral da habitação

RESULTADOS DEFINITIVOS LISBOA

MOVIMENTOS PENDULARES
MEIO DE TRANSPORTE UTILIZADO NOS MOVIMENTOS PENDULARES
TEMPO MÉDIO POR DESLOCAÇÃO PENDULAR

Commuting(regional interactions), 2011

Means of transport in commuting

Average time in commuting (average 30 min 2001; 26 min 2011)

1,60 milhões de pessoas

2,57 milhões de pessoas

46 080 valid answers, 18169 na AMP e 27911 na AML, contemplando um total de 99144 indivíduos (40393 na AMP e 58751 na AML).

Campain: October-December 2017

1st Web (Computer Assisted Web Interview-CAWI)

2nd Face to face interviews(**Computer Assisted Personal Interview-CAPI**) for the non respondants 1st stage.

Why people travel?

How people travel?

How fast people travel?

Average 30 km/h

Why car?

- Speed;
- Confort;
- No public transport direct connection between origin and destination.

Voltar ao Índice

Unidade:10³

Recent mobility survey 2017 Porto and Lisbon

Impact of people travel?

Quadro 6

Deslocações por tipo de dia e meio de transporte principal da deslocação

AM Lisboa

	Deslocações				
	Total semanal	Dias úteis	SDF a)		
AM Lisboa	37,697.1	27,439.7	10,257.4		
Transporte individual	22,542.4	15,715.5	6,826.9		
Automóvel - condutor	17,326.3	12,334.4	4,992.0		
Automóvel - passageiro	4,884.7	3,110.2	1,774.5		
Motociclo/ciclomotor	331.3	270.9	60.4		
Transporte público ou coletivo	5,939.5	5,056.6	882.9		
Dos quais:					
Autocarro	2,945.9	2,476.0	469.9		
Comboio	1,215.7	1,032.0	183.7		
Metropolitano	1,167.8	1,014.6	153.2		
Modos suaves (a pé e bicicleta)	8,857.7	6,404.3	2,453.4		
Outro/desconhecido	357.4	263.4	94.1		

Number trips Per mode

a) SDF - Sábados, domingos e Feriados

Surveys

Impact of people travel?

Quadro 9

Ciências ULisboa

Tempo e distância por deslocação, segundo o principal meio de transporte das deslocações

AM Lisboa

	Duração média (minutos)	Distância média (km)
AM Lisboa	24.3	10.3
Automóvel - condutor	21.7	12.7
Automóvel - passageiro	20.8	13.3
Motociclo/ciclomotor	18.0	11.7
Autocarro (transporte público)	45.7	12.1
Comboio	53.4	19.1
Metropolitano	39.7	8.5
Barco	58.1	19.5
Táxi	19.6	6.4
Transporte escolar / empresa	32.6	17.2
A pé	17.0	1.5
Bicicleta	36.2	8.8
Outro/desconhecido	31.7	24.2

Nota: Exclui as deslocações internacionais

km per trip

Impact of people travel?

Σ_i (Number trip_i X km per trip_i X EC_i)

i mode of transport

EC_i final energy consumption by mode (MJ/pkm)

1st design 2nd test in a few people 3rd did you get the info you needed?

Yes! Ready to go...

How people travel?

How people travel? 2017 FCUL survey

(overall population, students, professores, researchers, others)

- Origin -destination distance
- Transportation mode
- Commuting duration and average speed
- Car ownership (#cars per #family) comparison with national average
- Location parking for those who use the car

How people travel? 2017 FCUL survey

- Why not public transport for those who use car
- Rush hours (morning peak and afternoon peak)
- Willingness to drive an EV?
- Willingness to use carsharing?
- Willingness to use carpooling?
- Willingness to use bikesharing?
- Willingness to be on na autonomous car/drive and a full autonomous car

How people travel? 2017 FCUL survey due 10 november

emissions per capita
CO2
PM 10
NOx
CO2eq per year WTT and TTW

and.....as additional conclusions

- Main difficulties dealing with the file?
- Lessons learned

- First steps in a sustainable mobility plan;
- Mobility measures;
- How to design a survey to get the right answers;
- Final energy consumption/emission estimation from surveys.

Obrigado

Ciências ULisboa

Faculdade de Ciências da Universidade de Lisboa